项目作者: voicegain

项目描述 :
Python tools to compare output transcript to reference
高级语言: Python
项目地址: git://github.com/voicegain/transcription-compare.git
创建时间: 2019-07-16T20:31:01Z
项目社区:https://github.com/voicegain/transcription-compare

开源协议:MIT License

下载


Utility to compare output transcript to reference

Uses Ukkonen algorithm to efficiently compute Leveshtein distance and character error rate (CER).

Additionally it can output alignment information.

Usage

  1. Usage: transcribe-compare [OPTIONS]
  2. Transcription compare tool provided by VoiceGain
  3. Options:
  4. -r, --reference TEXT source string
  5. -o, --output TEXT target string
  6. -R, --reference_file FILENAME source file path
  7. -O, --output_file FILENAME target file path
  8. -a, --alignment Do you want to see the alignment result?
  9. True/False
  10. -e, --error_type [CER|WER]
  11. -j, --output_format [JSON|TABLE]
  12. -l, --to_lower Do you want to lower all the words?
  13. True/False
  14. -p, --remove_punctuation Do you want to remove all the punctuation?
  15. True/False
  16. -P, --to_save_plot Do you want to see the windows? True/False
  17. -s, --to_edit_step INTEGER Please enter the step
  18. -w, --to_edit_width INTEGER Please enter the width
  19. --help Show this message and exit.

Dependencies

  • click
  • inflect
  • re
  • nltk
  • metaphone
  • matplotlib

Sample Commands

  1. python transcribe-compare -R sample_data/The_Princess_and_the_Pea-reference.txt -O sample_data/The_Princess_and_the_Pea-output-1.txt -e CER

HTML Output

HTML Output: Single Compare - Stats

Related code

There is a script available that using transcribe-compare to compare results from Voicegaing and Google recognizers. You can find it here: https://github.com/voicegain/platform/tree/master/utility-scripts/test-transcribe

Acknowledgements

Contributed by VoiceGain.

VoiceGain provides Deep-Neural-Network-based Speech-to-Text (ASR) available in Cloud and also as an Edge Deployment.
Accessible via RESTful Web API or MRCP v2 interface.
Is suitable both for continuous large-vocabulary transcription (real-time or off-line) and for recognition using context-free grammars (e.g. GRXML).
In addition to this VoiceGain platform provides API-driven method to modify models used in speech-to-text. It is possible to modify language model, pronunciation model, and the acoustic DNN model.

License

MIT © VoiceGain