项目作者: mnikitin

项目描述 :
Gluon implementation of anti-aliased CNNs
高级语言: Python
项目地址: git://github.com/mnikitin/Shift-Invariant-CNNs.git
创建时间: 2020-03-17T15:28:58Z
项目社区:https://github.com/mnikitin/Shift-Invariant-CNNs

开源协议:

下载


Shift-Invariant-CNNs

Gluon implementation of anti-aliased CNNs: https://arxiv.org/abs/1904.11486

Based on original PyTorch implementation: https://github.com/adobe/antialiased-cnns

CIFAR-10 experiments

Usage

Example of training resnet20_v1 with anti-aliasing and random crop augmentation:

  1. python3 train_cifar10.py --mode hybrid --num-gpus 1 -j 8 --batch-size 128 --num-epochs 186 --lr 0.003 --lr-decay 0.1 --lr-decay-epoch 81,122 --wd 0.0001 --optimizer adam --model cifar_resnet20_v1 --antialiasing --random-crop

Results



























































Model random crop anti-aliasing Train accuracy Test accuracy
cifar_resnet20_v1 1.0000 0.8879
1.0000 0.9026
0.9918 0.9165
0.9960 0.9184
cifar_resnet20_v2 1.0000 0.8850
0.9999 0.9051
0.9891 0.9114
0.9953 0.9084