项目作者: vlukiyanov

项目描述 :
PyTorch implementation of SDAE (Stacked Denoising AutoEncoder)
高级语言: Python
项目地址: git://github.com/vlukiyanov/pt-sdae.git
创建时间: 2018-07-02T22:32:50Z
项目社区:https://github.com/vlukiyanov/pt-sdae

开源协议:MIT License

下载


pt-sdae

Build Status codecov
Codacy Badge

PyTorch implementation of a version of the Stacked Denoising AutoEncoder (note this implementation is unofficial). Compatible with PyTorch 1.0.0 and Python 3.6 or 3.7 with or without CUDA.

Examples

An example using MNIST data can be found in the examples/mnist/mnist.py which achieves around 80% accuracy using
k-Means on the encoded values.

Here is an example confusion matrix, true labels on y-axis and predicted labels on the x-axis.
Alt text

Usage

This is distributed as a Python package ptsdae and can be installed with python setup.py install. The PyTorch nn.Module class representing the SDAE is StackedDenoisingAutoEncoder in ptsdae.sdae, while the pretrain and train functions from ptsdae.model are used to train the autoencoder.

Currently this code is used in a PyTorch implementation of DEC, see https://github.com/vlukiyanov/pt-dec.