项目作者: XuyangHu

项目描述 :
Structure-Aware 3D Shape Synthesis from Single-View Images (BMVC 2018)
高级语言: Python
项目地址: git://github.com/XuyangHu/SA3D.git
创建时间: 2020-05-11T07:20:17Z
项目社区:https://github.com/XuyangHu/SA3D

开源协议:

下载


Structure-Aware 3D Shape Synthesis from Single-View Images [Paper]

TensorFlow implementation for “Structure-Aware 3D Shape Synthesis from Single-View Images”.


The pipline of the proposed SA3D

Dependencies

  1. Python>=3.5, TensorFlow>=1.4, numpy, scipy, matplotlib

Dataset

We used ShapeNet dataset Download dataset, password: se16. We provided the training set in this link, if you need the full of dataset, please contact me.

Testing

Results of our Download pretrained models, password: 3j2z. We provided the pretrained model in $—MODE leftside_to_rightside$, if you need the full of pretrained model, please contact me.

  1. python main.py --phase test --mode $MODE$ --test_data_path $DATA_DIR$ --pretrained_model_path $PRETRAINED_MODEL$
  • MODE: src viewpoint to dst viewpoint, such as leftside_to_rightside
  • DATA_DIR: path to test data
  • PRETRAINED_MODEL: path of the pretrained model

Then, you can use 3D-R2N2 test based on the synthesis images.

Training

  1. python main.py --phase train --data_path $DATA_DIR$ --mode $MODE$
  • DATA_DIR: path to train data
  • MODE: src viewpoint to dst viewpoint, such as leftside_to_rightside

Then, you can use 3D-R2N2 train based on the synthesis images.

Citation

If you use any part of this code in your research, please cite our paper:

  1. @inproceedings{hu2020structure,
  2. title={Structure-Aware 3D Shape Synthesis from Single-View Images},
  3. author={Xuyang Hu, Fan Zhu, Li Liu, Jin Xie, Jun Tang, Nian Wang, Fumin Shen, and Ling Shao},
  4. booktitle={Proceedings of the 29th British Machine Vision Conference},
  5. year={2018}
  6. }

Acknowledge

The code is built on CycleGAN (TensorFlow) and 3D-R2N2. We thank the authors for sharing the codes.