项目作者: ggjlab

项目描述 :
Mouse cell atlas
高级语言: R
项目地址: git://github.com/ggjlab/scMCA.git
创建时间: 2018-01-13T15:09:31Z
项目社区:https://github.com/ggjlab/scMCA

开源协议:

下载


scMCA

A tool defines cell types in mouse based on single-cell digital expression

At first scMCA is a breif R package for large scale data(large DGE) from scMCA online function Mouse Cell Atlas ,to alleviate burdens of our main Server.

Now we add a UI for visulizing the scMCA reuslt.

Installation

  1. #This require devtools
  2. install.packages('devtools')
  3. library(devtools)
  4. # scMCA requires ggplot2/reshape2/plotly/shiny/shinythemes/shiny
  5. install_github("ggjlab/scMCA")

Quick Start

  1. library(scMCA)
  2. # mca_lung is an example expression matrix from MCA project.
  3. > data(mca_lung)
  4. > dim(mca_lung)
  5. [1] 2884 80
  6. # 2884 genes expression value of 80 cells
  7. # scMCA has two parameters , single cell expression matrix(scdata) and
  8. # the number of most similar cell types
  9. > mca_result <- scMCA(scdata = mca_lung, numbers_plot = 3)

The return of scMCA() is a list which contains 4 parts.

  • cors_matrix: Pearson correlation coefficient matrix of each cell and cell type.
  • top_cors: equals to numbers_plot
  • scMCA: the most relevant cell type for each query cell
  • scMCA_probility: the top n relevant cell types for each query cell
  1. # open shiny for visualize result for scMCA
  2. scMCA_vis(mca_result)

scMCA_vis() provides a bref function for visualizing and downloading of scMCA results
scMCA_vis