项目作者: velocyto-team

项目描述 :
RNA velocity estimation in R
高级语言: R
项目地址: git://github.com/velocyto-team/velocyto.R.git
创建时间: 2017-10-10T17:48:55Z
项目社区:https://github.com/velocyto-team/velocyto.R

开源协议:

下载


velocyto.R

RNA velocity estimation in R

System requirements

velocyto.R can be installed on unix-flavored systems, and requires the following key elements:

  • C++11
  • Open MP support
  • boost libaries
  • igraph library
  • hdf5c++ library (as required by the h5 R package to support loom files)

Installation

The easiest way to install velocyto.R is using devtools::install_github() from R:

  1. library(devtools)
  2. install_github("velocyto-team/velocyto.R")

You need to have boost (e.g. sudo apt-get install libboost-dev) and openmp libraries installed. You can see detailed installation commands in the dockers/debian9/Dockerfile.

Dockers

If you are having trouble installing the package on your system, you can build a docker instance that can be used on a wide range of systems and cloud environments. To install docker framework on your system see installation instruction. After installing the docker system, use the following commands to build a velocyto.R docker instance:

  1. cd velocyto.R/dockers/debian9
  2. docker build -t velocyto .
  3. docker run --name velocyto -it velocyto

Tutorials

Chromaffin / SMART-seq2

The example shows how to annotate SMART-seq2 reads from bam file and estimate RNA velocity.

Dentate Gyrus / loom

The example shows how to load spliced/unspliced matrices from loom files prepared by velocyto.py CLI, use pagoda2 to cluster/embed cells, and then visualize RNA velocity on that embedding.

Mouse BM / dropEst

This example shows how to start analysis using dropEst count matrices, which can calculated from inDrop or 10x bam files using dropEst pipeline. It then uses pagoda2 to cluster/embed cells, and then visualize RNA velocity on that embedding.