项目作者: JJack27

项目描述 :
An unofficial implementation of Google Brain's research in 2018
高级语言: Python
项目地址: git://github.com/JJack27/Auto-Augment.git
创建时间: 2019-12-14T21:34:08Z
项目社区:https://github.com/JJack27/Auto-Augment

开源协议:MIT License

下载


UAlberta Multimedia Master Program - Reinforcement Learning for Auto Data Augmentation

An unofficial implementation of Google Brain’s research in 2018 using tensorflow 1.15.0. Instead of using PPO, we use basic REINFORCE policy gradient algorithm with involving creative idea : depressed feedback.

Requirement

  • numpy
  • tensorflow 1.15.0
  • keras
  • PIL
  • matplotlib

Code files

  • child_net.py: containing python class representing child network. Can be replaced by any classifer as long as it is a keras model.
  • controller.py: containing python class representing the RNN controller. Implemented in tensorflow 1.x.
  • data_iterator.py: containing python class to load cifar10 dataset. If policy is given, it will automatically apply image operations.
  • run.py: code to run.
  • transformations.py: contains functions of image transformations. 16 in total.

How to run

  1. python3 run.py